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Abstract
It is well established numerically that spectral statistics of pseudo-integrable
models differs considerably from the reference statistics of integrable and
chaotic systems. In Bogomolny and Schmit (2004 Phys. Rev. Lett. 93 254102)
statistical properties of a certain quantized pseudo-integrable map had been
calculated analytically but only for a special sequence of matrix dimensions.
The purpose of this paper is to obtain the spectral statistics of the same quantum
map for all matrix dimensions.

Mathematics Subject Classification: 37E10, 15A52, 81Q10, 81Q50

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The relation between spectral statistics of a quantum system and its classical counterpart is
one of the main achievements of quantum chaos. It is established that at the scale of the
mean level density the spectral statistics of classically integrable systems are described by
the Poisson distribution [1] and the spectral statistics of classically chaotic systems are close
to the statistics of eigenvalues of standard random matrix ensembles depending only on the
underlying symmetry [2]. Though these statements had not mathematically been proved in the
full generality and there exist noticeable exceptions (e.g. chaotic systems on constant negative
curvature surfaces generated by arithmetic groups [3]), these conjectures are widely accepted
for ‘generic’ quantum systems.

Much less is known when a system is not classically integrable or completely chaotic.
An important example which we have in mind is the case of pseudo-integrable systems (see
e.g. [4]) represented by two-dimensional polygonal billiards whose each angle is a rational
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multiple of π . A typical classical trajectory in such models covers a two-dimensional surface
of a finite genus � 2 [5]. For comparison, a trajectory of a two-dimensional integrable model
belongs to a two-dimensional torus of genus 1 and a typical trajectory of a two-dimensional
chaotic system covers ergodically the whole three-dimensional surface of constant energy.

Numerical calculations [6] clearly demonstrated that the spectral statistics of pseudo-
integrable billiards is not universal and depends on billiard angles. It appears that the spectral
statistics of such models has two characteristic features: a level repulsion at small distances and
an exponential decrease in the nearest-neighbour distribution at large separations. This type
of statistics (called intermediate statistics) has been observed for the first time in the numerical
simulations of the Anderson model at the point of metal–insulator transition [7] and later
in this context has been profoundly investigated (see e.g. a recent review [8] and references
therein). Unfortunately analytical progress in the investigation of intermediate statistics in
pseudo-integrable systems is limited. In [9] the level compressibility of certain pseudo-
integrable billiards was computed analytically, thus confirming the intermediate character
of their spectral statistics. The main difficulty in the analytical treatment of two-dimensional
pseudo-integrable billiards is the strong diffraction on billiard corners with angles �= π/n

with integer n. Though there exists the exact Sommerfeld’s solution for the scattering on
such angles [10], the diffraction coefficient is formally infinite along the optical boundaries
so it is impossible to treat the multiple corner diffraction in perturbation series. A certain
progress has been made in [11] where it was found that the multiple diffraction along periodic
orbit channels in pseudo-integrable systems forces the wave functions to tend to zero on
the channel boundaries thus forming superscarring states observed recently in micro-wave
experiments [12].

The difficulties in analytical solution of pseudo-integrable billiards lead to the necessity of
investigation of simpler models with similar features. A promising example is the quantization
of interval exchange maps which are known to be the correct description of classical dynamics
in pseudo-integrable systems [4, 5].

In [13] the following classical parabolic map had been quantized:

�α :

(
p

x

)
�⇒

(
p + α

x + f (p + α)

)
mod 1. (1)

Here α is a constant and f (p) is a certain function (taken equal to 2p in [13]). For rational
α = m/q this map corresponds to the simplest interval exchange map of two intervals.

After a straightforward generalization of the results of [13] the N × N unitary matrix
associated with the above map has the form of the diagonal matrix ei�k with real �k multiplied
by a constant unitary matrix µkp (k, p = 0, 1, . . . , N − 1):

Mkp = ei�kµkp , (2)

where �k = −2πNF(k/N) with F ′(p) = f (p) and

µkp = 1

N

N−1∑
r=0

exp

[
2π i

N
r(k − p + αN)

]
= 1 − e2π iαN

N(1 − e2π i(k−p+αN)/N)
. (3)

The matrix µkp depends on a parameter α and the last equality is valid when αN is not an
integer. (In the latter case the spectrum of (2) can be obtained analytically [14] and we always
assume below that for rational α = m/q, mN �≡ 0 mod q.)

Because �k in (2) are defined modulo 2π many increasing functions F(p) will effectively
correspond to pseudo-random phases distributed between 0 and 2π . As it was done in [15]
we consider two typical cases. The first corresponds to the ensemble of random matrices (2)
where all N phases �k are considered as independent random variables distributed uniformly
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between 0 and 2π . We call such matrices non-symmetric ensemble. In the second case only a
half of the phases are independent random variables uniformly distributed between 0 and 2π .
The other half is related to the first one by the symmetry

�N−k = �k, k = 1, . . . ,

[
N

2

]
. (4)

This case will be called the symmetric ensemble as in the dynamical interpretation the
transformation k → −k is the time-inversion symmetry.

The eigenvalues �n and the eigenvectors uk(n), n = 1, 2, . . . , N , are defined as usual

�nuk(n) =
N−1∑
p=0

Mkpup(n) . (5)

Because matrix Mkp is unitary (M M† = 1), its eigenvalues lie on the unit circle

�n = eiθn (6)

and its eigenvectors can be chosen orthonormal
N−1∑
k=0

ūk(m)uk(n) = δmn. (7)

The statistical properties of matrix (2) depend crucially on the arithmetic of the parameter α.
For irrational α the map (1) is only a parabolic map and methods developed in [15] and in
this paper cannot be directly applied. Numerical calculations suggest that for Diophantine α

the spectral statistics of the matrix (2) is very close to the standard statistics of the Gaussian
ensembles of random matrices [16]. Namely, non-symmetric matrices are described by the
GUE statistics and symmetric matrices by the GOE statistics. For illustration in figure 1
we plot the nearest-neighbour distribution for matrices (2) with α = √

5/4 and N = 801.
The solid lines indicates the Wigner surmise (8) which is known (see e.g. [16]) to be a good
approximation for the GUE and the GOE distributions.

pGUE(s) = 32

π2
s2e−4s2/π , pGOE(s) = π

2
se−πs2/4. (8)

Rational α = m/q with co-prime integers m and q correspond to an interval exchange map [13]
and we shall consider only such values of α throughout the paper.

This paper investigates the following question: What are the statistical properties of
eigenvalues of the matrix (2) for fixed rational α = m/q and large N? It appears that to
get a well-defined limit in this case it is necessary to consider increasing sequences of matrix
dimensions, N , such that the product of the numerator of α times N has a fixed residue modulo
the denominator of α

mN ≡ k mod q. (9)

In [15] it was demonstrated that for a special sequence of matrix dimensions with

mN ≡ ±1 mod q (10)

eigenvalues of the matrices (2) and (3) are described by the so-called semi-Poisson statistics
which has been proposed in [17] as the simplest model of intermediate statistics.

Let x1 � x2 � . . . � xK be an ordered sequence of real numbers (eigenvalues). The
joint distribution for the semi-Poisson statistics is proportional to the product of the nearest
distances between these level times a confining potential V (x):

P(x1, x2, . . . , xK) ∼
∏

i

|xi+1 − xi |β
∏

i

.e−V (xi ). (11)
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Figure 1. Open circles are nearest-neighbour distribution with α = √

5/4 and N = 801
for non-symmetric matrices (a) and symmetric matrices (b). Solid lines indicate the Wigner
surmise (8).

In the limit K → ∞ all correlation functions of the semi-Poisson statistics at the scale of the
mean level density do not depend on V (x) and can be obtained analytically [17]. In particular,
the probability that between two levels there exist exactly n − 1 levels has the form

pn(β; s) = (β + 1)nβ+n

�(nβ + n)
snβ+n−1e−(β+1)s . (12)

The semi-Poisson statistics depends only on one parameter β which fixes the level repulsion
at small distances so the nearest-neighbour distribution (i.e. pn(β; s) for n = 1) tends to
zero as sβ :

p(β; s) = Aβsβe−(β+1)s (13)

with Aβ = (β + 1)β+1/�(β + 1).
From a mathematical point of view the semi-Poisson statistics can be considered as

a stochastic process with independent increments (with gamma distribution) forming a
convolution semigroup

(pn ∗ pm)(β; s) ≡
∫ s

0
pn(β; y)pm(β; s − y) dy = pn+m(β; s). (14)

According to [15] when the condition (10) is satisfied the spectral statistics of the matrix (2)
tends for large N to the semi-Poisson distribution with the following integer and half integer
values of β depending on the denominator of α = m/q and the symmetry of the map:

β =
{

q − 1 for non-symmetric ensemble
1
2q − 1 for symmetric ensemble

. (15)

To compare numerical calculations with theoretical predictions it is often more precise to
consider instead of the nearest-neighbour distribution, p(s), (as in figure 1) its integral

N(s) ≡
∫ s

0
p(s ′) ds ′ (16)

which gives the relative number of levels when the distance between the nearest-neighbour
eigenvalues is less than s.
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Figure 2. Differences between the integrated nearest-neighbour distributions for the non-symmetric
ensemble of matrix (2) with α = 1/2 for different odd N and the theoretical prediction for this
case (17). The different lines from bottom to top at small s correspond, respectively, to N = 101,
201, 401, 801 and 1601.

To illustrate the convergence of the spectral statistics of the above matrices to the predicted
values let us consider e.g. α = 1/2 with odd N . From (15) and (13) it follows that
the limiting integrated nearest-neighbour distribution in the non-symmetric case is here the
simplest semi-Poisson distribution with β = 1:

Nsp = 1 − (2s + 1)e−2s . (17)

In figure 2 the difference between the integrated nearest-neighbour distribution computed
numerically and its theoretical prediction (17) is plotted for different odd matrix dimensions.
For this and other similar figures in the paper the number of realizations is chosen to be the
minimum between 100 and 50 000/N . The figure shows that the agreement is quite good (less
than 0.02) even for N of the order of a few hundreds.

The purpose of this paper is to calculate the spectral statistics of the above quantized
pseudo-integrable map in the general case (9) with k �= 0, ±1 mod q. The plan of the paper
is the following. Sections 2 and 3 give extended details of the construction briefly discussed
in [15]. The peculiarity of the problem under consideration is the existence of 2 rank-one
deformations of the original matrix (2) with known eigenvalues and eigenvectors. These
deformations are discussed in section 2. In section 3 it is demonstrated that these rank-one
deformations lead to long-range correlations between the eigenvalues of the initial matrix (2).
To obtain a clear picture of these correlations it is convenient to use a special form of eigenvalue
ordering (an analogue of the unfolding) which is discussed in section 4. In section 5 it is shown
that these long-range correlations can effectively be taken into account by the construction of a
kind of transfer operator. This operator is a finite dimensional matrix whose largest eigenvalue
and corresponding eigenvectors permit to calculate all correlation functions. This is done
explicitly for a few main examples in section 6. Obtained analytical formulae agree well with
numerical calculations. The summary of the results is present in section 7. Certain technical
details are given in the appendices.
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2. Rank-one deformations

As was shown in [15] the important property of the matrices (2) and (3) is the possibility to
rewrite it in the following form

Mkp ≡ ei�k
(1 − e2π iαN)

N(1 − e2π i(k−p+αN)/N)
= Nkp +

1 − e2π iαN

N
ei�k (18)

where a new matrix Nkp is

Nkp = Mkpe2π i(k−p+αN)/N . (19)

Eigenvalues �′
n and eigenvectors ψk(n) of the matrix Nkp,

�′
nψk(n) =

N−1∑
p=0

Nkpψp(n), (20)

can easily be expressed through the eigenvalues and the eigenvectors of the original matrix Mkp,

ψk(n) = e2π ik/Nuk(n), �′
n = e2π iα�n. (21)

But from (18) it follows that matrix Nkp is a rank-one deformation of matrix Mkp so it is
possible to construct its eigenvalues and the corresponding eigenvectors in a different way (see
e.g. [18]).

Write a formal expansion of an eigenvector of matrix Nkp as a series of the complete set
of eigenvectors of the matrix Mkp:

ψk(n) ≡ e2π ik/Nuk(n) =
N∑

m=1

cm(n)uk(m). (22)

From (18) one gets

�′
n

N∑
m=1

cm(n)uk(m) =
N∑

m=1

cm(n)�muk(m) − 1 − e2π iαN

N
ei�k

N∑
m=1

cm(n)

N−1∑
p=0

up(m). (23)

Introducing the notations

Am =
N−1∑
k=0

uk(m), g(n) =
N∑

m=1

cm(n)Am (24)

and using the orthogonality of eigenvectors uk(n) (7) one obtains

cm(n) = 1 − e2π iαN

N
g(n)

Bm

�m − �′
n

, (25)

where

Bm =
N−1∑
k=0

ei�k ūk(m). (26)

Multiplying both sides of (25) by Am and summing from 1 to N one concludes that every
eigenvalues �′

m of the matrix Nkp obey the equation

1 = 1 − e2π iαN

N

N∑
m=1

AmBm

�m − �′
n

. (27)

From (5) and (3) it follows that

�mB̄m = Am (28)
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and equation (27) takes the final form

1 = 1 − e2π iαN

N

∑
m

�m|Bm|2
�m − �′

n

. (29)

For rank-one deformations of a real symmetric matrix all terms in the corresponding equation
would be real and one easily comes to the well-known conclusion that the eigenvalues of a rank-
one deformation of a real symmetric matrix are in-between the eigenvalues of the unperturbed
ones (cf [18]). In our case both the matrices, Mkp and Nkp, are unitary and their eigenvalues lie
on the unit circle: �m = eiθm , �′

n = eiθ ′
n . So arguments require straightforward modifications.

From (29) one gets

N

1 − e2π iαN
=

∑
m

|Bm|2
1 − ei(θ ′

n−θm)
, (30)

which can be rewritten as follows:

N(cot παN − i) =
∑
m

|Bm|2
(

cot
θ ′
n − θm

2
− i

)
. (31)

Due to the completeness of uk(m) one has
N∑

n=1

ūp(n)uk(n) = δpk. (32)

and, consequently,
N∑

m=1

|Bm|2 = N. (33)

Therefore, the imaginary part of (31) is identically zero and new phases θ ′
n have to be determined

from a real equation

F(θ ′
n) = N cot παN, (34)

where F(θ) is defined by

F(θ) =
N∑

m=1

|Bm|2 cot
θ − θm

2
. (35)

In the interval [0, 2π) F (θ) has poles at θ = θm (assuming that all Bm �= 0) and it is
monotone between them (cf figure 3). Let the eigenphases θm be ordered on the unit circle
0 � θ1 � θ2 � . . . � θN < 2π . Then between two nearby eigenvalues θm and θm+1 (mod 2π )
there exists one and only one new eigenvalue θ ′

n. Here the new eigenvalues are not necessarily
ordered. But according to (21) all eigenphases of the matrix Nkp have the form θ ′

m = θm +2πα

(mod 2π ). Therefore we prove the following lemma (cf figure 4).

Lemma 1. The eigenvalues of the unitary matrix Mkp defined in (2) and (3) are such that after
the rotation by 2πα in-between any pairs of nearest eigenvalues there exists one and only one
rotated eigenvalue.

Multiplying (18) by exp(−2π i(k − p + αN)/N) one gets another relation

Mkp = Ñkp − 1 − e2π iαN

N
ei�k−2π i(k−p+αN)/N (36)

with a new matrix Ñkp

Ñkp = Mkpe−2π i(k−p+αN)/N (37)
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Figure 3. Schematic plot of equation (34) (solid black line). F(θ) is defined by (35). Vertical
dashed lines represent the pole positions. Horizontal straight line indicates the value of the right-
hand side of equation (34). The abscissa of its intersections with F(θ) (indicated by black circles)
give the solutions of that equation.

Figure 4. Illustration of lemma 1. Black circles denote the position of 7 eigenphases for α = 1/5
and black lines are their radius vectors. Black squares indicate the position of eigenphases after
the rotation by angle 2π/5 and the dashed red lines are radius vectors of the rotated eigenphases.
The rotated points are indicated by the same number but with sign′.

whose eigenvalues and eigenvectors are

ψ̃k(n) = e−2π ik/Nuk(n), �̃′
n = e−2π iα�n. (38)

Repeating the above calculations but for the matrix Ñkp one finds that its eigenvalues �̃′
m have

to be determined from the equation

1 = 1 − e2π iαN

N

N∑
m=1

�m|B̃m|2
�m − �̃′

n

, (39)

where

B̃m =
N−1∑
k=0

ūk(m)ei�k−2π ik/N . (40)

As it has exactly the same form as (29) and �̃′
n = e−2π iα�n one comes to the lemma.
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Lemma 1′. The eigenvalues of Mkp are such that after the rotation by −2πα between two
nearest eigenvalues of Mkp there exists one and only one rotated eigenvalue.

These lemmas prove the existence of long-range correlations between eigenvalues of the
matrix Mkp which are merely a consequence of the fact that rank-one deformations (18) and
(36) of the original matrix (2) have eigenvalues easily expressible through eigenvalues of the
original matrix.

A few other consequences of this property is worth mentioning. As all N solutions of
(29) have the form �′

n = �ne2π iα with n = 1, . . . , N the numerators of this equation can be
found explicitly. From appendix A it follows that

1 − e2π iαN

N
�m|Bm|2 =

∏N
n=1(�m − �ne2π iα)∏

s �=m(�m − �s)
, (41)

which can be rewritten in the real form as follows

|Bm|2 sin παN

N sin πα
=

∏
n�=m

sin( 1
2 (θm − θn − 2πα))

sin( 1
2 (θm − θn))

. (42)

Similarly, from (39) one concludes that

1 − e−2π iαN

N
�m|B̃m|2 =

∏N
n=1(�m − �ne−2π iα)∏

s �=m(�m − �s)
. (43)

So

|B̃m|2 sin παN

N sin πα
=

∏
n �=m

sin( 1
2 (θm − θn + 2πα))

sin( 1
2 (θm − θn))

. (44)

3. Long-range correlations

In the preceding sections it has been proved that eigenphases of matrix (5) have a special type
of long-range correlations. Namely, when one rotates all eigenvalues of this matrix by ±2πα

and superimposes the rotated eigenphases with non-rotated ones then in-between two nearest
eigenvalues of the original matrix there will be one and only one rotated eigenphase. In this
section we investigate certain consequences of such correlations in more details.

Let us put all eigenvalues of unitary matrix (2) on the unit circle and consider a sector
of angle 2πα which contains n eigenvalues (see figure 5(a)). The sector boundaries divide
the unit circle in-between certain eigenphases. Denote the angular distance from the sector
boundaries to the nearest eigenphases in the clockwise and counterclockwise directions by yk ,
yk+1 and xk , xk+1, respectively (cf figure 5(a)). We choose by convention to take yk = 0 if
one eigenvalue lies exactly on the boundary of the sector. The reason for these notations will
become clearer on the following page. After the rotation by 2πα only two possibilities are
possible: either the point xk or the point yk will fall inside the points xk+1 and yk+1. In the
first case one has xk < xk+1 and yk+1 < yk . In the second case the inequalities are reversed:
xk > xk+1 and yk+1 > yk . Therefore in the all cases the following inequality is fulfilled:

(yk+1 − yk)(xk+1 − xk) < 0. (45)

This inequality is valid for all α and N . From now on we shall consider only rational α:

α = m

q
(46)

with co-prime integers m and q.
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Figure 5. (a) Eigenphases close to the boundaries of a 2πα sector. (b) Division of the unit circle
into sectors of angle 2πm/q. Black circles indicate the position of eigenphases in two nearby
sectors. Dashed lines show the positions which will occupy eigenvalues from one sector after the
rotation by 2πm/q.

As above divide the unit circle into q radial sectors of angle 2πm/q. When m = 1 these
sectors are disjoint but for m > 1 they will overlap. Denote the number of eigenphases in the
kth sector by nk (see figure 5(b)).

After the rotation by 2πm/q the eigenphases from the kth sector will move into the (k+1)th
sector. These rotated points will divide this sector into nk + 1 intervals. According to lemma 1
the eigenphases in the (k + 1)th sector have to be intertwined with the rotated eigenvalues.
Therefore, all intervals except the first and the last have to be occupied. The first will be
occupied if xk > xk+1 and the last will be occupied if yk+1 > yk+2. All these requirements can
be rewritten as the following recurrence relation:

nk+1 = nk − 1 + 
(xk − xk+1) + 
(yk+1 − yk+2) . (47)

Here as in figure 5(a) xk and yk are distances from the boundary of the kth sector to the two
closest eigenphases to it and 
(x) is the Heaviside function: 
(x) = 1 if x > 0 and 
(x) = 0
if x < 0. From (45) it follows that the difference yk+1 − yk+2 is of opposite sign from the
difference xk+1 − xk+2 and the last relation takes the form

nk+1 = nk − 1 + 
(xk − xk+1) + 
(xk+2 − xk+1). (48)

Now choose the beginning of the first sector at the position of an eigenphase (i.e. impose
y1 = 0). Then from (45) it follows that x2 < x1 and xq < x1. Direct applications of (48) give

n2 = n1 − 1 + 
(x1 − x2) + 
(x3 − x2) = n1 + 
(x3 − x2) (49)

because x1 > x2,

n3 = n2 − 1 + 
(x2 − x3) + 
(x4 − x3)

= n1 + 
(x3 − x2) − 1 + 
(x2 − x3) + 
(x4 − x3) = n1 + 
(x4 − x3) (50)

because 
(x)+
(−x) = 1 and so on. In this manner one concludes that for j = 2, . . . , q −1

nj = n1 + 
(xj+1 − xj ) (51)

and nq = n1 + 1 because, as was noted above, xq < x1.
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As the sum over all q sectors cover the unit circle m times, the sum over all nk equals mN :∑q

k=1 nk = mN . Therefore

mN = qn1 + 1 +
q−1∑
j=2


(xj+1 − xj ). (52)

When mN ≡ 1 mod q, all 
-functions on the right-hand side of this expression are forced to
be zero which leads to the conclusion that in this case

xq < xq−1 < . . . < x2 < x1. (53)

When mN ≡ −1 mod q, all 
-functions have to be equal to 1 and the inequalities are reversed

x2 < x3 < . . . < xq−1 < xq < x1. (54)

Inequalities (53) and (54) manifest the existence of an exceptionally strong long-range
correlations when mN ≡ ±1 mod q. For usual matrix ensembles correlations between
eigenvalues separated by a large distance tend to zero. But in our case eigenphases at distances
2πmk/q with k = 1, . . . , (q − 1) are not independent but restricted by the above inequalities.
In [15] only these special cases had been considered.

4. Geometrical unfolding

Inequalities (45) and recurrence relations (48) include eigenvalues separated by distances of
the order of 2π/q where q is the denominator of α. On the other hand, the mean level density
equals 2π/N where N is the matrix dimension. As we are interested in the case N → ∞ with
q fixed, the restrictions implied by (45) and (48) are of long range which makes it difficult
to incorporate them for calculations of correlation functions of nearby levels. In this section
we show that these long-range restrictions can be transformed by geometrical unfolding into
a more tractable form.

Let us split the unit circle into q angular sectors of angle 2πm/q as above and denote the
positions of eigenvalues inside each sector on q horizontal lines numerated from bottom to
top by numbers from 1 to q (see figure 6). As the last and the first sectors are connected, it is
useful to draw vertical lines from points at the lowest horizontal line (i.e. eigenvalue positions
inside the first sector) till they cross the highest horizontal line. In such a way this last line
will contain two sets of points. The first indicates eigenvalue positions inside the last sector
and the second reports the images of the first sector points after the rotation by −2πm/q.
From the condition xq < x1 proved in the previous section it follows that these two groups of
points intertwine and at the qth line between two nearby vertical lines there is one and only
one eigenvalue point.

Below we shall construct different staircase lines. Each starts from a point on the lowest
horizontal line, goes right and up, and ends on the last horizontal line at the image of another
lowest line point. The distance along the lowest line between the final and the initial points is
divided by consecutive eigenvalues into a certain number of intervals. If this number equals k

we will say that the staircase line has the shift (or shifted) by k units.
According to lemmas 1 and 1′, between two closest eigenphases of the matrix (2) there

is one and only one eigenphase rotated by 2πα = 2πm/q. In the unfolded description it
is manifested by the condition that points at each line have to be in-between two close-by
points on the lower line. The relative positions of eigenvalues strongly depend on distances
xk from the beginning of each sector to the eigenphase closest to it (see (52)). In the unfolded
representation (as in figure 6(a)) xk are the distances along the horizontal lines to points closest
to a vertical line which represents the boundary of a sector with angle 2πm/q.
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(a) (b)

Figure 6. (a) Small black circles: schematic view of eigenvalues of matrix (2) for α = 1/5
and N = 14 (N ≡ −1 mod 5). Numbers from 1 to 14 indicate the consecutive eigenphases.
Eigenphases rotated by 2π/5 are denoted by red squares. For clarity they are situated on a smaller
dashed circle. (b) The same configuration of eigenvalues but unfolded on five horizontal lines
representing 5 sectors. x1, . . . , x5 are the distances from the beginning of the sectors to the closest
eigenphase as in figure 5(a), thick red lines demonstrate relative eigenvalue positions.

Let us start from the lower left point and draw a horizontal line till there is at the vertical
a point situated at the first line above it. Then draw the vertical line till it touches that point.
Now continue drawing a horizontal line till there is at the vertical a point at the upper line
closest to the boundary of the given sector and so on. This line will go right if xk+1 > xk and
left if xk+1 < xk . Finally, points will be connected by stepwise lines as in figure 6(b). Note
that according to our convention point 1 does not belong to the first line but to the last one.
The shape of these lines are determined by the inequalities between all xk . In figure 6 the case
of N ≡ −1 mod 5 is indicated. According to (54) xk+1 > xk for k = 1, . . . , 4 which explains
the staircase form of these lines. They all start at points along the first horizontal line, go up
and to the right, and finally finish at the last horizontal line but with the shift by 1 unit. It is
clear that such lines cannot cross each other.

For other matrix dimensions these lines will have a different shape. Consider first as an
example the case α = 1/5 and N ≡ −2 mod 5. From (52) it follows that in this case only 2
of 3 
-functions have to be equal to 1. Every time one of the 
-functions is zero, the above
lines turn to the left (see figure 7) so the shape of the stepwise curve differs from the one of
figure 6(b). Consider the horizontal line when it first turns left. Instead of the left turn let
us continue to the right till we touch another point on this line. As between these two points
there exists only one point at the lower and higher lines there is no contradiction with our line
construction (cf figure 7). Finally we come to the conclusion that for these values of α and N

the eigenphases have to be connected by non-intersecting lines which go only up and to the
right and whose initial and final points are shifted by 2 units.

These arguments can be generalized for all values of matrix dimensions and we get the
following description of the local unfolded structure of the eigenvalues:

Claim. For α = m/q and mN ≡ −k mod q, the mutual positions of eigenphases of matrix (2)
can be described as follows. Fix q horizontal lines, put arbitrary points at the lowest line, and
note the vertical images of these points along the last line. Draw staircase non-intersecting
lines going only up and to the right with the condition that they start at the lower line and end
at last line but with the shift by k units. Points at horizontal lines are situated at the corners
of the constructed lines.
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(a) (b)

Figure 7. (a) Small black circles: schematic view of the eigenvalues of matrix (2) for α = 1/5
and N = 18 (i.e. N ≡ −2 mod 5). The thick red lines connect eigenphases as indicated in the text.
(b) The same configuration of eigenvalues but connected by non-decreasing staircase lines.

Proof. Start from the lowest left point and draw the staircase line using the same rules as
above but this time we will always go right along the horizontal lines. When this staircase
line touches the last qth horizontal line we will continue it right till the closest vertical line,
and then we stop the process. From lemma 1 it follows that the first vertical segment cannot
be shifted more than 1 unit (i.e. it cannot cross vertical line emanating from the first point
along the lowest horizontal line closest from the right to the initial point). The second vertical
segment of the constructed staircase line cannot be shifted more than 2 units and so on. Finally
the full staircase line will have a certain shift between 1 unit and q − 1 units.

Now repeat the construction of the staircase line but starting from the closest point to the
right of the first point (cf figure 7(b)). By construction these two staircase lines are disjoint
and, as was mentioned above, at the last line between two nearby vertical lines there is one and
only one eigenvalue point. From these two conditions it follows that the shift of the second
staircase line has to be the same as of the first one. If the second line shift is less than the first
line shift then we have two non-decreasing lines whose initial and final points are in different
orders. But then they have to intersect which is not allowed. If the second line shift is bigger
than the first line shift then it means that at the last horizontal line an eigenvalue point will be
not connected to these two staircase lines. Then one can construct a staircase line starting from
this point, which will go down and left. Finally such line will cross the lowest horizontal line
in a certain point. But the first two constructed staircase lines were emanating from the two
closest points. Therefore the descending line has to cross one of that lines, which is forbidden.
These arguments show that the shift of the staircase line is independent of the choice of the
initial point and it is a property of the whole eigenvalue configuration.

Let us call the vertical line from the lowest left point the base line. If the shift of the
staircase line from this point equals k units (1 � k � q − 1) then on the last horizontal line
at the right of the base line there exist k − 1 points which are the end points of other staircase
lines emanating from k − 1 points at the left of the initial point. As these lines are continuous
they will pass the vertical base line by certain k − 1 horizontal segments. If k = 1 there
is no point between the base line and the staircase line emanating from the initial point. In
this case xj+1 > xj for all j = 2, . . . , q − 1 and there is no line where xj+1 < xj except,
of course, j = 1 (cf figure 6(b)). Let k > 1. Consider the staircase line which descends
from the point on the last horizontal line closest to the base line (i.e. with a shift equal to 1
unit). This line will cross the vertical base line by a certain horizontal segment belonging to
the horizontal line number r1 (2 � r1 � q − 1). Going right along this horizontal line we
will finally find a point which belongs to another staircase line. If k = 2, that line will end in
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the initial point. Then the stepwise line which will be the closest to the base line (and which
determines xj ) consists of two increasing staircase segments and only at one line xr1+1 < xr1

(cf figure 7). When k > 2 the second staircase line will cross the base line along the horizontal
line number r2 (2 � r2 � r1 − 1). Going right along that horizontal line we will find a point
from which another staircase line (different from the first two) descends. Therefore one will
have xr2+1 < xr2 . And so on. In the end we find that there exist exactly k − 1 values of j

for which xj+1 < xj . Comparing this statement with (52) we conclude that in this case there
exist exactly k − 1 
-functions which equal zero. All other 
-functions will equal one. As
the total number of 
-functions is q − 2 we find that in this case mN ≡ −k mod q which
proves the first part of the lemma, namely, that if for a configuration the shift equals k then
mN ≡ −k mod q.

The inverse statement, that if mN ≡ −k mod q then the staircase line emanating from
an eigenvalue will have a shift equal to k, can be proved by the same method. Assume that
mN ≡ −k then from (52) it follows that k − 1 
-functions have to be negative. It means that
there exist k − 1 indices 1 � j1 < . . . < jk−1 � q − 1 for which xj+1 < xj . Let us start
from the initial point and draw the staircase line which goes right and up as above. At the
line number j1 we have to jump to a point closer to the base line. After it one continues along
the new increasing staircase line till it crosses the horizontal line with number j2 where one
shifts to another line and so on. The last staircase line has to have a shift equal to 1 unit. As
we performed k − 1 jumps the total shift of the staircase line from any point equals k units.
Q.E.D.

When k > q/2 one may simplify the construction by using non-intersecting stepwise
lines going up and to the left with the shift by q − k. It implies that properties of the cases
mN ≡ k mod q and mN ≡ −k mod q are the same.

5. Transfer operator

The above unfolding gives not only a clear picture of mutual positions of eigenphases but also
serves as the basis of the explicit calculation of the spectral statistics for the problem under
consideration. The calculations are based on the following conjecture proposed in [15].

Conjecture. For α = m/q the eigenvalues of the qth power of the original matrix (2) for
all N �≡ 0 mod q have universal spectral statistics independent on q and N but different for
different symmetry classes of random phases �k . For non-symmetric ensemble the statistics
of Mq coincides with the Poisson statistics and for symmetric ensemble (4) it is described by
the semi-Poisson statistics with β = −1/2 called in [15] the super-Poisson statistics.

The main physical argument in favour of this conjecture in [15] was the fact that for
rational α = m/q the qth power of the classical map (1) corresponds to a classically integrable
map, and according to the usual wisdom [1] integrable models have to be described by the
Poisson statistics. Extensive numerical calculations agree very well with this conjecture. But
it seems that to prove it rigorously one has to develop new methods which are at present under
investigation [19].

After unfolding, when the points from all the sectors separated by 2πm/q are taken
together, they can be considered as the eigenphases of the qth power of the original matrix (with
evident rescaling). Assuming the validity of the conjecture it follows that for all N �≡ 0 mod q

these points constitute the semi-Poisson ensemble with β = 0 for non-symmetric matrices and
β = −1/2 for symmetric ones.
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In particular, the probability that between two eigenvalues of Mq separated by x there
exist exactly r eigenvalues is the following:

pr(x) =




xr

r!
e−x for non-symmetric ensemble,

1

2(r+1)/2�((r + 1)/2)
x(r−1)/2e−x/2 for symmetric ensemble.

(55)

The results of the preceding section can be reformulated such that the joint probability of
the close-by levels integrated over all the possible positions of other levels is the same as the
probability of non-intersecting staircase lines which start from the initial levels and which
finish after q steps (where q is the denominator of α) with the shift of k units (where k is the
residue of mN modulo q). According to the conjecture the distribution of unfolded points are
known which permits the calculation of spectral statistics of the original matrix (2).

The usual method of computing the probability of non-intersecting paths in a Markoff
process is the determinantal representation [20]. We found that for practical reasons it is more
convenient to use the transfer operator method. In this method one first unfolds the spectrum as
indicated in figure 7. Then one considers a vertical strip bounded by vertical lines emanating
from any two nearby levels of original matrix, say θ2 and θ3 in figure 7 separated by the
distance x = θ3 − θ2. Now different horizontal lines can enter and can leave the strip. When
all in-coming and out-coming horizontal lines are fixed, it is obvious that the configuration
inside the strip is not affected by outside points. Therefore, it is possible to integrate over all
configurations of points inside the strip with prescribed ordering. Denoting the initial and final
lines by indices i and j the result of integration constitutes the matrix element Tji(x) of the
transfer matrix T (x).

For rational α = m/q and mN ≡ −k mod q with 1 � k � q − 1 each initial (and final)
state is determined by fixing l = k − 1 horizontal lines:

1 � i1 < i2 < . . . < il � q − 2 (56)

from the total number of lines equal q − 2. The number l is imposed by the shift of k units
between initial and final points on the horizontal lines (cf the proof of the claim in the preceding
section). It means that the dimension of the transfer operator is

t = Cl
q−2 (57)

and it is convenient to label the set of l integers obeying (56) in, e.g., lexicographical order.
For clarity, let us consider the case α = 1/5 and N ≡ −2 mod 5 in detail (l = 1). As

q = 5 there is one possible horizontal line which may go through the vertical strip (cf figure 7).
Therefore the transfer matrix is 3 × 3 matrix labeled by the number of these lines. In figure 8
all possible configurations for this case are presented.

In general, if i ≡ (i1, i2, . . . , il) and j ≡ (j1, j2, . . . , jl) are multi-indexes of an initial and
a final states, the total number of points, r , inside the considered vertical strip is determined
by the expression

r = j1 +
l−1∑
s=1

[js+1 − is] + q − 1 − il = |j | − |i| + q − 1, (58)

where |j | ≡ j1 + · · · + jl and |i| ≡ i1 + · · · + il . The number of points r is accounted by an
initial set of j1 points as the lowest line has to exit at position j1, a set of q − 1 − il points as
the highest entering line has to exit at the top of the diagram, and the contributions js+1 − is of
points from the remaining entering and exiting lines. In general, rmin � r � rmax with

rmin = 2 , rmax = k(q − k). (59)
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Figure 8. Structure of the transfer operator for α = 1/5 and N ≡ −2 mod 5.

If at least one term in the square brackets in (58) is negative, the configuration is impossible and
the corresponding matrix element equals zero. Otherwise, the integration over all intermediate
configurations compatible with the imposed inequalities gives the value of the transfer matrix
elements.

The calculation of this probability is straightforward. According to the above conjecture,
the probability that between two eigenvalues of Mq separated by x there exist r ordered
eigenvalues ys such that

0 � y1 � y2 � · · · � yr � x (60)

is given by (55). Therefore, the transfer matrix element Tji(x) is the product of two factors

Tji(x) = njipr(x) (61)

where r is the integer determined by (58), pr(x) is the same as in (55) and nji is the number
of configurations of r points which fulfilled all inequalities comparable with the fixed initial
and final states. Interchanging the initial and final states and counting horizontal lines from
the top one gets that the transfer operator matrix elements obey the following symmetry:

Tji(x) = TiT jT (x), (62)

where if i = (i1, . . . , il), iT = (q − 1 − il, . . . , q − 1 − i1).
For example, for α = 1/5 and N ≡ −2 mod 5 the T12 element includes 5 points

(cf figure 8), 3 points, a, b, c belonging to the upper curve, and 2 points, A and B, belonging
to the lower curve. From the mutual positions of these points it follows that the T12(x) matrix
element equals the probability that the following inequalities are fulfilled

0 � a � b � c � x, 0 � A � B � x, a � A, b � B. (63)
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By inspection one finds that there exist exactly five possible ordered sequences compatible
with inequalities (63), namely

a b c A B, a b A B c, a A b B c, a b A c B, a A b c B.

Therefore T12(x) = 5p5(x). Following the symmetry (62) we also have
T23(x) = T12(x) = 5p5(x).

By construction the joint probability of the eigenvalues is equal to the product of the
transfer matrices over all nearby points. As we are interested in the limit of a large number of
eigenvalues, the exact behaviour near the boundaries is not important and one can take simply
the trace of the whole product. We are now interested in the local behaviour of the eigenvalues.
To distinguish with the previous section we choose to label them xi from now.

Finally the joint probability of an ordered sequence of K + 1 eigenphases of the original
matrix x1 < x2 < . . . < xK < xK+1 in the interval L = xK+1 − x1 integrated over all possible
configuration of levels on other sectors takes the form

PL(x1, x2, . . . , xK, xK+1) = 1

ZK(L)
Tr [T (xK+1 − xK) · . . . · T (x2 − x1)] δ(xK+1 − x1 − L),

(64)

where ZK(L) is the normalization constant.
In appendix B it is demonstrated that in the limit K → ∞ and L → ∞ such that the mean

density L/K = 1 the normalized nearest-neighbour distribution is determined by the formula

p(s) = e−hs

λ(h)

〈v(h)T (s)w(h)〉
〈v(h)w(h)〉 . (65)

Here 〈· · ·〉 denotes scalar products as in (B.15) and (B.17).
λ(γ ) in (65) is the largest modulus eigenvalue of the Laplace transform of the transfer

matrix

T̂ij (γ ) =
∫ ∞

0
Tij (x)e−γ xd x, (66)

and wj(γ ) and vj (γ ) are the corresponding right and left eigenfunctions (cf (B.6)). h in (65)
denotes a special value of γ calculated from the saddle-point equation

λ′(h)

λ(h)
+ 1 = 0 . (67)

These formulae are general and can be applied for an arbitrary transfer matrix. As the x

dependence of our transfer matrix T (x) is given by simple formulae (61) and (55) it is easy to
check that

wi = w̃i(γ + 1)|i|, vi = ṽi (γ + 1)−|i|, λ = λ̃(γ + 1)−q (68)

for non-symmetric matrices, and

wi = w̃i(2γ + 1)|i|/2 , vi = ṽi (2γ + 1)−|i|/2, λ = λ̃(2γ + 1)−q/2 (69)

for symmetric matrices. Here i denotes the multi-index (i1, · · · , il), |i| = i1 + . . . + il and all
tilded quantities are independent of γ .

From these relations one finds that the saddle point h obeying (67) is

h =
{
q − 1 for non-symmetric ensemble,
(q − 1)/2 for symmetric ensemble.

(70)
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Using (59) we conclude that the nearest-neighbour distribution (65) for α = m/q and
mN ≡ −k mod q equals the following finite sums:

p(s) =
k(q−k)∑
n=2

ans
ne−qs (71)

for non-symmetric matrices and

p(s) =
(k(q−k)−1)∑

n=1

an/2s
n/2e−qs/2 (72)

for symmetric ones.
The nearest-neighbour distribution for all considered cases (with k �= 0, ±1 mod q)

manifests level repulsion at small s

p(s) ∼
{
s2 for non-symmetric ensemble,
s1/2 for symmetric ensemble

(73)

and has the exponential decrease at large s as it should be for intermediate statistics.
Other correlation functions can also be written explicitly through the same quantities [17].

In particular, the two-point correlation form factor has the following form:

K(τ) = 1 + 2Re g(2π iτ), (74)

where

g(t) = 〈w(h)L(t + h)(1 − L(t + h))−1v(h)〉
〈w(h)v(h)〉 (75)

and the matrix L(s) = T̂ (s)/λ(h).
One can check that for all N the level compressibility K(0) = 1/q for non-symmetric

matrices and K(0) = 2/q for symmetric ones.
Numerically it was established [21] but not yet proved analytically that eigenvectors of the

considered ensembles of random matrices have fractal properties independent of the residue
k �= 0 mod q.

6. Explicit calculations

The simplest new case corresponds to α = 1/5 and N ≡ ±2 mod 5. Considering all
configurations in figure 8, one gets that in this case the transfer matrix has the following
form

T (x) =




3p4(x) 5p5(x) 5p6(x)

3p3(x) 5p4(x) 5p5(x)

2p2(x) 3p3(x) 3p4(x)


 . (76)

Performing the calculations discussed in the preceding section we find that when α = 1/5 and
N ≡ ±2 mod 5 the nearest-neighbour distribution for non-symmetric matrices is

p(s) = (a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6)e−5s , (77)

where coefficients an are the following: a2 = 625/2 − 275
√

5/2 ≈ 5.041, a3 = 3125/2 −
1375

√
5/2 ≈ 25.203, a4 = 71875/48 + 33125

√
5/48 ≈ 45.724, a5 = −15625/3 +

9375
√

5/4 ≈ 32.451, a6 = 1015625/288 − 453125
√

5/288 ≈ 8.357.
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Figure 9. One of the transfer matrix elements for α = 1/7 and N ≡ −3 mod 7.

In a similar manner one finds that for symmetric matrices under the same conditions p(s)

is given by the following expression:

p(s) = (a1/2s
1/2 + a1s + a3/2s

3/2 + a2s
2 + a5/2s

5/2)e−5s (78)

with a1/2 ≈ 0.3597, a1 ≈ 1.5122, a3/2 ≈ 2.6105, a2 ≈ 1.9471, a5/2 ≈ 0.5725.
For α = 1/7 and N ≡ ±2 mod 7 the transfer operator is represented by the 5 × 5 matrix:

T (x) =




5p6(x) 14p7(x) 28p8(x) 42p9(x) 42p10(x)

5p5(x) 14p6(x) 28p7(x) 42p8(x) 42p9(x)

4p4(x) 10p5(x) 19p6(x) 28p7(x) 28p8(x)

3p3(x) 6p4(x) 10p5(x) 14p6(x) 14p7(x)

2p2(x) 3p3(x) 4p4(x) 5p5(x) 5p6(x)




. (79)

Computing its largest eigenvalue and using (65) one finds that the nearest-neighbour
distribution in this case for non-symmetric matrices has the form

p(s) = (a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + a7s

7 + a8s
8 + a9s

9 + a10s
10)e−7s , (80)

where coefficients an are a2 � 3.4998, a3 � 24.4986, a4 � 82.4309, a5 � 176.8723, a6 �
251.6396, a7 � 229.5488, a8 � 130.8981, a9 � 43.7932, a10 � 6.8214.

For symmetric matrices for the same α and N

p(s) = (a1/2
√

s + a1s + a3/2s
3/2 + a2s

2 + a5/2s
5/2 + a3s

3 + a7/2s
7/2 + a4s

4 + a9/2s
9/2)e−7s/2

(81)

with a1/2 � 0.1508, a1 � 0.7500, a3/2 � 2.0293, a2 � 3.8675, a5/2 � 5.3099, a3 �
5.0193, a7/2 � 3.1567, a4 � 1.2312, a9/2 � 0.2350.

For α = 1/7 and N ≡ ±3 mod 7 there exist two possible entering lines and two leaving
lines (cf figure 9) The dimension of the transfer matrix in this case is C2

5 = 10. Its explicit
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form is the following:

T (x) =




10p6 35p7 70p8 84p9 56p8 168p9 252p10 210p10 462p11 462p12

10p5 35p6 70p7 84p8 56p7 168p8 252p9 210p9 462p10 462p11

6p4 20p5 40p6 49p7 30p6 91p7 140p8 112p8 252p9 252p10

3p3 8p4 15p5 19p6 10p5 30p6 49p7 35p7 84p8 84p9

4p4 15p5 30p6 35p7 26p6 77p7 112p8 98p8 210p9 210p10

3p3 12p4 25p5 30p6 20p5 61p6 91p7 77p7 168p8 168p9

2p2 6p3 12p4 15p5 8p4 25p5 40p6 30p6 70p7 70p8

0 3p3 8p4 10p5 6p4 20p5 30p6 26p6 56p7 56p8

0 2p2 6p3 8p4 3p3 12p4 20p5 15p5 35p6 35p7

0 0 2p2 3p3 0 3p3 6p4 4p4 10p5 10p6




.

(82)

Finally one obtains that for α = 1/7 and N ≡ ±3 mod 7 the nearest-neighbour distribution
for non-symmetric ensemble is

p(s) = (a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + a7s

7 + a8s
8 + a9s

9 + a10s
10 + a11s

11 + a12s
12)e−7s

(83)

where a2 � 4.056, a3 � 28.3898, a4 � 91.6591, a5 � 177.9134, a6 � 227.8782, a7 �
200.0096, a8 � 121.6091, a9 � 50.5880, a10 � 13.778, a11 � 2.2159, a12 � 0.1596.

For symmetric matrices under the same conditions

p(s) = (a1/2
√

s + a1s + a3/2s
3/2 + a2s

2 + a5/2s
5/2 + a3s

3 + a7/2s
7/2

+ a4s
4 + a9/2s

9/2 + a5s
5 + a11/2s

11/2)e−7s/2 (84)

with a1/2 � 0.1747, a1 � 0.8691, a3/2 � 2.2565, a2 � 3.8902, a5/2 � 4.8085, a3 �
4.3734, a7/2 � 2.9327, a4 � 1.4222, a9/2 � 0.4747, a5 � 0.0979, a11/2 � 0.0094.

In figures 10 and 11 the calculated nearest neighbour distributions are plotted for α = 1/5
and α = 1/7 with all possible residues of N �≡ 0 modulo 1/α. As expected, the case
N ≡ ±1 mod 1/α differs considerably from other cases. When the residue, k, increases the
nearest-neighbour distribution more and more resembles to the nearest-neighbour distribution
of the standard Gaussian ensembles of random matrices. For example, for α = 1/7 the results
with N ≡ ±2 and N ≡ ±3 are difficult to distinguish from the Wigner surmise (8) for GUE
(for non-symmetric matrices) and for GOE (for symmetric ones).

To compare these formulae with the results of the numerical simulations it is more precise
to use the integrated nearest-neighbour distribution (16). In figures 12 and 13 such comparison
is performed for all the cases considered. The agreement is quite good and the differences are
of the same order as in figure 2.

7. Summary

A unitary random matrix ensemble

Mkp = ei�k
(1 − e2π iαN)

N(1 − e2π i(k−p+αN)/N)
(85)

corresponding to a quantization of a simple pseudo-integrable map (1) is considered in detail.
These matrices are characterized by a rational parameter α = m/q, the matrix dimension N

and symmetry properties of random phases �k (4). To get a well-defined limit of the spectral
statistics of these ensembles for large N it is necessary to consider increasing sequences of N

such that mN has a fixed residue modulo the denominator of α:

mN ≡ −k mod q (86)
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Figure 10. Nearest-neighbour distribution for α = 1/5 for (a) the non-symmetric ensemble and
(b) the symmetric one. Dashed lines correspond to N ≡ ±1 mod 5 given by (13) with β = 4 in (a)
and β = 3/2 in (b). Solid lines indicate the results for N ≡ ±2 mod 5 given by (77) in (a) and by
(78) in (b).
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Figure 11. The same as in figure 10 but for α = 1/7. Dashed black lines correspond to
N ≡ ±1 mod 7 given by (13) with β = 6 in non-symmetric matrices and β = 3/2 for symmetric
matrices. The red dotted–dashed lines indicate the results for N ≡ ±2 mod 7 given by (80) in (a)
and by (81) in (b). Solid black lines represent the results for N ≡ ±3 mod 7 determined by (83) in
(a) and by (84) in (b).

with the residue k = 0, 1, . . . , q − 1. For k = 0 all eigenvalues of the main matrix can be
found analytically as in [14]. For all other residues the spectral statistics of the considered
ensembles is non-trivial and differs considerably from standard random matrix ensembles. The
cases k = 1 and k = q − 1 have been investigated in [15] where it was shown that for these k

the nearest-neighbour distribution has the following form:

p(s) ∼
{
sq−1e−qs for non-symmetric ensemble,
sq/2−1e−qs/2 for symmetric ensemble.

(87)

In this paper a kind of transfer operator method is developed to calculate the spectral statistics of
the same matrix for all values of k. It is demonstrated that the nearest-neighbour distribution
equals the product of a finite polynomial in s for non-symmetric matrices and in

√
s for
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Figure 12. Difference between the integrated nearest-neighbour distribution and the corresponding
theoretical prediction for α = 1/5: (a) for non-symmetric ensembles, (b) for symmetric matrices.
In each graph pictures differ by the matrix dimensions. From bottom to top N = 801 (N ≡ 1 mod 5)
and 802 (N ≡ 2 mod 5).
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Figure 13. The same as in figure 12 but for α = 1/7. From bottom to top N = 799 (N ≡ 1 mod 7),
800 (N ≡ 2 mod 7) and 801 (N ≡ 3 mod 7).

symmetric matrices times the same exponential factor as in (87)

p(s) =




k(q−k)∑
n=2

ans
ne−qs for non-symmetric ensemble,

(k(q−k)−1)∑
n=1

an/2s
n/2e−qs/2 for symmetric ensemble.

(88)

Statistical properties of sequences with residue k and q − k are the same. The values of
coefficients an can be calculated by finding the largest eigenvalue and the corresponding left
and right eigenvectors of the transfer matrix.
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For α = 1/5 and α = 1/7 and all possible residues the explicit form of these coefficients
have been calculated. Numerical simulations in these cases are in good agreement with the
obtained formulae. Other correlation functions can also be expressed from the same quantities.

It appears that the considered ensembles of random matrices permit different
generalizations which will be discussed elsewhere [19].
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Appendix A. Algebraic relations

The purpose of the appendix is to give the proofs of certain formulae used in the text.
Let for all n = 1, . . . , N

N∑
m=1

bm

xm − yn

= 1. (A.1)

Solutions bm of these equations can be expressed in terms of Cauchy determinants and

bm =
∏

n(xm − yn)∏
s �=m(xm − xs)

. (A.2)

A simple way to check it is to consider the function

fn(x) =
∏

r �=n(x − yr)∏
s(x − xs)

=
∏

r (x − yr)

(x − yn)
∏

s(x − xs)
. (A.3)

Asymptotically fn(x) → 1/x so the integral over a big contour encircling all poles equals
2π i. Rewriting this integral as the sum over the poles gives

1 =
∑
m

∏
r (xm − yr)

(xm − yn)
∏

s �=m(xm − xs)
(A.4)

which proves (A.2).
Denote

g(x) =
∏

n(x − �ne2π iα)

x
∏

k(x − �k)
. (A.5)

This function decreases as 1/x for large x and has poles at x = 0 and x = �k . Integrating it
over a contour encircling all poles one gets

1 = e2π iNα +
N∑

m=1

∏
n(�m − �ne2π iα)

�m

∏
k �=m(�m − �k)

(A.6)

from which it follows that |Bm|2 defined by (41) obeys automatically the normalization
condition (33).
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Appendix B. Transfer operator calculations

The purpose of this appendix is to derive the nearest-neighbour distribution of eigenvalues
when their joint probability has the form of the product of transfer matrices as in (64). The
material is not new (see e.g. [17] and references therein) and presented here for convenience.

Introducing the differences between consecutive eigenvalues

ξj = xj+1 − xj (B.1)

the probability (64) can be rewritten as follows:

PL(ξ1, . . . , ξK) = 1

ZK(L)
Tr [T (ξK) · . . . · T (ξ2) · T (ξ1))] δ(ξ1 + ξ2 + · · · + ξK − L) . (B.2)

The normalization constant ZK(L) is determined from

ZK(L) =
∫ ∞

0
dξK . . .

∫ ∞

0
dξ1PL(ξ1, . . . , ξK). (B.3)

Due to the special structure of PL(ξ1, . . . , ξK) in (B.2) these integrals are of convolution type
and can be calculated by the Laplace transform. One gets

ẐK(γ ) ≡
∫ ∞

0
ZK(L)e−γLdL = Tr

[
T̂ (γ )

]K

, (B.4)

where matrix T̂ (γ ) ≡ T̂ij (γ ) is the Laplace transform of initial transfer matrix Tij (x)

T̂ij (γ ) =
∫ ∞

0
Tij (x)e−γ xd x. (B.5)

As Tr
[
T̂ (γ )

]K = ∑
j λK

j where λj are eigenvalues of matrix T̂ (γ ), in the limit K → ∞
the dominant contribution comes from an eigenvalue with the largest modulus. Denote such
eigenvalue by λ(γ ) and the corresponding right and left eigenfunctions by wj(γ ) and vj (γ ),
respectively: ∑

j

T̂ij (γ )wj (γ ) = λ(γ )wi(γ ),
∑

i

vi(γ )T̂ij (γ ) = λ(γ )vj (γ ). (B.6)

As stated, when K → ∞
ẐK(γ ) → (λ(γ ))K. (B.7)

The normalization constant is obtained from this quantity by the inverse Laplace transform

ZK(L) = 1

2π i

∫ c+i∞

c−i∞
(λ(γ ))KeγLdγ, (B.8)

where c is greater than all singularities of λ(γ ).
We are interested in the limit K → ∞ and L → ∞ but when the mean level density L/K

is kept constant, which from now we normalize to 1. In this case the main contribution to the
above integral comes from a vicinity of a saddle point γ = h determined from the saddle-point
condition

λ′(h)

λ(h)
+ 1 = 0. (B.9)

Shifting the integration contour that it passes through the saddle point gives

ZK(L) ∼ (λ(h))KehL. (B.10)

The pre-factor is irrelevant for our purpose.
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The nearest-neighbour distribution is determined by the integration of (B.2) over all but
one variables

pK(s; L) = 1

ZN(L)
RK(s; L), (B.11)

where

RK(s; L) =
∫ ∞

0
dξK . . .

∫ ∞

0
dξ2Tr [T (ξK) · . . . · T (ξ2) · T (s))] δ(s + ξ2 + · · · + ξK − L).

(B.12)

Performing the Laplace transform of the both parts of this expression we obtain in the same
way as above that

R̂K(s; γ ) ≡
∫ ∞

0
pK(s; L)e−γLdL = Tr

[(
T̂ (γ )

)K−1
T (s)

]
. (B.13)

Matrix
(
T̂ (γ )

)K−1
has the same eigenfunctions as matrix T̂ (γ ) and its eigenvalues equal

(K − 1)th power of the ones of T̂ (γ ). Therefore in the limit K → ∞
[(

T̂ (γ )
)K−1]

ij
→ (λ(γ ))K−1 wi(γ )vj (γ )

〈v(γ )w(γ )〉 . (B.14)

Here

〈v(γ )w(γ )〉 =
∑

t

vt (γ )wt (γ ) (B.15)

is the scalar product of left and right eigenfunctions of T̂ (γ ) introduced to normalize these
eigenfunctions.

RK(s; L) is obtained from its Laplace transform by standard formula (B.8). As above, the
dominant contribution will be given by the same saddle point as in (67). Performing simple
calculations one finds that normalized nearest-neighbour distribution when L/K = 1 and
K → ∞ is given by the following general formula

p(s) = e−hs

λ(h)

〈v(h)T (s)w(h)〉
〈v(h)w(h)〉 , (B.16)

where

〈v(h)T (s)w(h)〉 =
∑
ij

vi(h)Tij (s)wj (h) . (B.17)

Due to (67) p(s) in the above expression obeys the standard normalization conditions∫ ∞

0
p(s) ds = 1,

∫ ∞

0
sp(s) ds = 1. (B.18)

References

[1] Berry M and Tabor M 1977 Level clustering in the regular spectrum Proc. R. Soc. Lond. A 356 375
[2] Bohigas O, Giannoni M-J and Schmit C 1984 Characterization of chaotic quantum spectra and universality of

level fluctuation laws Phys. Rev. Lett. 52 1
[3] Bogomolny E, Georgeot B, Giannoni M-J and Schmit C 1997 Arithmetical chaos Phys. Rep. 291 220
[4] Richens P J and Berry M V 1981 Pseudointegrable systems in classical and quantum mechanics Physica D:

Nonlinear Phenom. 2 495
[5] Zemlyakov A N and Katok A B 1975 Topological transitivity in billiards in polygons Math. Notes 18 760
[6] Bogomolny E, Gerland U and Schmit C 1999 Models of intermediate spectral statistics Phys. Rev. E 59 R1315
[7] Shklovskii B I, Shapiro B, Sears B R, Lambrianides P and Shore H B 1993 Statistics of spectra of disordered

systems near the metal–insulator transition Phys. Rev. B 47 11487

http://dx.doi.org/10.1098/rspa.1977.0140
http://dx.doi.org/10.1103/PhysRevLett.52.1
http://dx.doi.org/10.1016/0167-2789(81)90024-5
http://dx.doi.org/10.1103/PhysRevE.59.R1315
http://dx.doi.org/10.1103/PhysRevB.47.11487


2126 E Bogomolny et al

[8] Evers F and Mirlin A D 2008 Anderson transitions Rev. Mod. Phys. 80 1355
[9] Bogomolny E, Giraud O and Schmit C 2001 Periodic orbits contribution to the 2-point correlation form factor

for pseudo-integrable systems Commun. Math. Phys. 222 327
[10] Sommerfeld A 1954 Optics (New York: Academic)
[11] Bogomolny E and Schmit C 2004 Structure of wave functions of pseudointegrable billiards Phys. Rev. Lett.

92 244102
[12] Bogomolny E, Dietz B, Friedrich T, Miski-Oglu M and Richter A 2006 Phys. Rev. Lett. 97 254102
[13] Giraud O, Marklof J and O’Keefe S 2004 Intermediate statistics in quantum maps J. Phys. A: Math. Gen. 37 L303
[14] Marklof J and Rudnick Z 2000 Quantum unique ergodicity for parabolic map Geom. Funct. Anal. 10 1554
[15] Bogomolny E and Schmit C 2004 Spectral statistics of a quantum interval-exchange map Phys. Rev. Lett.

93 254102
[16] Mehta M L 2004 Random Matrices (New York: Academic)
[17] Bogomolny E, Gerland U and Schmit C 2001 Short range plasma models for intermediate spectral statistics Eur.

Phys. J. B 19 121
[18] Albeverio S, Gesztesy F, Hoegh-Krohn R and Holgen H 1988 Solvable Models in Quantum Mechanics

(New York: Springer)
[19] Bogomolny E, Giraud O and Schmit C 2009 Random matrix ensembles associated with Lax matrices Phys. Rev.

Lett. submitted arXiv:nlin.0904.4898
[20] Karlin S and McGregor J 1959 Coincidence probabilities Pacific J. Math. 9 1141
[21] Martin M, Giraud O and Georgeot B 2008 Multifractality and intermediate statistics in quantum maps Phys. Rev.

E 77 035201

http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1007/s002200100516
http://dx.doi.org/10.1103/PhysRevLett.92.244102
http://dx.doi.org/10.1103/PhysRevLett.97.254102
http://dx.doi.org/10.1088/0305-4470/37/28/L01
http://dx.doi.org/10.1007/PL00001661
http://dx.doi.org/10.1103/PhysRevLett.93.254102
http://dx.doi.org/10.1007/s100510170357
http://arxiv.org/abs/nlin.0904.4898
http://dx.doi.org/10.1103/PhysRevE.77.035201

	1. Introduction
	2. Rank-one deformations
	3. Long-range correlations
	4. Geometrical unfolding
	5. Transfer operator
	6. Explicit calculations
	7. Summary
	 Acknowledgments
	Appendix A. Algebraic relations
	Appendix B. Transfer operator calculations
	 References

